US009330358B1

a2 United States Patent 10) Patent No.: US 9,330,358 B1
Rubin (45) Date of Patent: May 3, 2016
(54) CASE-BASED REASONING SYSTEM USING 8,073,804 Bl 12/2011 Rubin
NORMALIZED WEIGHT VECTORS 8,117,147 Bl 2/2012 Rubin
8,250,022 Bl 8/2012 Rubin
. . . 8,280,831 B1 10/2012 Rubin
(71) Applicant: The United States of America as 8285728 Bl 10/2012 Rubin
represented by the Secretary of the 8.315,958 Bl 11/2012 Rubin
Navy, Washington, DC (US) 8,447,720 B1* 52013 Rubinc..coocooc.. GO6N 5/025
706/46
(72) Inventor: Stuart H. Rubin, San Diego, CA (US) 8,938,437 B2* /2015 Hickey ooovivvivvirirrnrnns 707/706
2003/0194144 Al* 10/2003 Wenzel GO6K 9/6204
. 382/242
(73) Assignee: THE UNITED STATES OF 2009/0254543 AL* 10/2009 Ber ... GOGF 17/30675
AMERICA AS REPRESENTED BY 2010/0194932 Al* 82010 Mitsuya HO4N 5/3572
THE SECRETARY OF THE NAVY, 348/241
Washington, DC (US) (Continued)
(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35) o o)
U.S.C. 154(b) by 478 days. Shin, et al., “A case-based approach using inductive indexing for
corporate bond rating,” Decision Support Systems 32 (2001), pp.
(21) Appl. No.: 14/037,640 41-52,2001.*
(Continued)
(22) Filed: Sep. 26, 2013
Related U.S. Application Data Primary Examiner — Kakali Chaki
L o Assistant Examiner — Fuming Wu
(63) glor(litmu?lon:nz'gi‘g of ap}}))lic?\trlong 1;909 (1)3/5 734,609, (74) Attorney, Agent, or Firm — Spawar Systems Center
cd on Jan. 4, » now rat. No. 7,275,0.20. Pacific; Kyle Eppele; Ryan J. Friedl
(31) Int.ClL (57) ABSTRACT
GOG6F 17/00 (2006.01)))
GO6N 5/04 (2006.01) A system and method include comparing a context to cases
(52) US.CL stored in a case base, where the cases include Boolean and
1S SR GOG6N 5/04 (2013.01) ~ hon-Boolean independent weight variables and a domain-
(58) Field of Classification Search specific (.1epende1.10y variable. The case and context indepen-
None dent weight variables are normalized and a normalized
See anplication file for complete search histo weight vector is determined for the case base. A match
PP P 24 between the received context and each case of the case base is
(56) References Cited determined using the normalized context and case variables

U.S. PATENT DOCUMENTS

4,924,518 A * 5/1990 Ukitacoeveeninne G10L 15/00
704/239
6,144,964 A * 11/2000 Breese GO6F 17/30867
707/758

7,047,226 B2
7,158961 Bl *

5/2006 Rubin

1/2007 Charikar GO6F 17/3069

VECTOR POR CASK §

RHCIIVE A CONBEXT WITH

NORMALLZ: CONTEXT UALL N
VARIABLES

NON-BOOLEAN VARTABS

and the normalized weight vector. A skew value is determined
for each category of domain specific dependency variables
and the category of domain specific dependency variables
having the minimal skew value is selected. The dependency
variable associated with the selected category is then dis-
played to a user.

7 Claims, 8 Drawing Sheets

300

DETGRMINE NORMALIZED WEIGHT |

BASH

CO1RAN AND
LES |

ONBOOL AN |

US 9,330,358 B1
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2010/0201828 Al* 82010 Mitsuya HO4N 5/3572
348/208.6

2011/0072012 A1* 3/2011 Ah-Pine GO6F 17/30274
707/725

2012/0166439 Al* 6/2012 Poblete GO6F 17/3089
707/737

2013/0073533 Al* 3/2013 Hickey GO6F 17/30011
707/706

OTHER PUBLICATIONS

O’Leary, “Verification and Validation of Case-Based Systems,”
Expert Systems With Applications, vol. 6, pp. 57-66, 1993.*

Chang et al., “Indexing and retrieval in machining process planning
using case-based reasoning,” Artificial Intelligence in Engineering 14
(2000) pp. 1-13, 2000.*

Stahl, “Learning of Knowledge-Intensive Similarity Measures in
Case-Based Reasoning,” PhD Dissertation, Universitat
Kaiserslautern, 2003 .*

Nunez et al., “A comparative study on the use of similarity measures
in casebased reasoning to improve the classification of environmental
system situations,” Environmental Modelling & Software, 11 pages,
2003.*

Rubin, Stuart H., “On Randomization and Discovery”, Journal of
Informational Sciences, vol. 177, issue 1, pp. 170-191, Jan. 2007.
Rubin, Stuart H., “Computing With Words”, IEEE Transactions on
Systems, Man, and Cybernetics—Part B: Cybernetics, vol. 29, No. 4,
pp- 518-524, Aug. 1999.

Rubin, S.H., Murthy, S.N.J., Smith, N.H., and Trajkovic, L.,
“KASER: knowledge Amplification by Structured Expert Random-
ization,” IEEE Transactions on Systems, Man, and Cybernetics—
Part B: Cybernetics, vol. 34, No. 6, pp. 2317-2329, Dec. 2004.
Chaitin, G.J., “Randomness and Mathematical Proof,” Sci. Amer.,
vol. 232, No. 5, pp. 47-52, 1975.

Rubin, Stuart H., Chen, S., and Shyu, M., “Field Effect Natural
Language Semanitc Mapping”, IEEE International Conference on
Systems, Man, and Cybernetics, vol. 3, pp. 2483-2487, Oct. 5-8,
2003.

* cited by examiner

US 9,330,358 B1

Sheet 1 of 8

May 3, 2016

U.S. Patent

Juanhasuon uorEuedeg .a\
uﬂﬁmﬁoo Faqrdhao s \

Surdrrday -)
06

a88q PIOA - —

oL

r

L Emﬁw_umﬁnoT -

l
8

¥

yuenbasuon £ | |
fymarssog e | ——

L - SURROE]Y UM

manbaswo [

~ 08

|,....._\f

L
He-HERg

FEIH
-03-aA0 A

\/mq_.ﬁd a7
\Emﬁw 2810 U/ Frajas

! 1agq) EEER

A0 TUAP A I

PEATLRD 1) JUAE 8 D9

Justibaguo wronRTRdEg
S.EQEQD sapncduro

z~||1]

Swnderday-- ’

08

QYR PIOA, - — 1

(44

juanbasuo] £
Lmarssa g wea

L SUILI0ET Y HUIaTe [

juanbasuog ¢ |

- ﬁasf_mﬂn.uml I

~ OF

|..v,.u-
L

Ho-a18[a(]

PEaH
-07-aA0]

LRy s

TR
\ﬁmﬁwmmcnﬁ/ phey =il

0T1

U.S. Patent

100

May 3, 2016

Sheet 2 of 8

INPUT
DEVICE
118

DISPLAY
116

'

PROCESSOR
112

US 9,330,358 B1

MEMORY
114

m e o e e e e e A e e e e am o e

PROCESSOR 1|
120

PROCESSOR 2
130

FI1G. 2

PROCESSOR n
140

US 9,330,358 B1

Sheet 3 of 8

May 3, 2016

U.S. Patent

P
t
t
}
_ Foel
. =
H
}
§
_ S C
H
H
. , y A
[| : ! ;
I ! Lo FOVRILINI | TOVIITING | FOVIAEING |
- mxu%%%mw% W mhwmww.wmm% AARA dALNG MSIA | HARIU
| ‘ W : IVOLLAO | DLLANOVIN | MSIQ AYYH |
| W M i i
H
| ¢ g S < S
| 86¢C tardd 0¢T 8¢¢C 9TC
0¢? "
t
H | SNE WALSAS
00T -~ |
| S
}
" 90¢
H
_ ST w N
! m M M
! JALIVAY W LINN i AMOWTN
* _ » OAdIA \ DNISSADON | \ WHISAS
9% " ““““““““““““““““ 20¢ voc-
| S
}
] YT
§

U.S. Patent

May 3, 2016 Sheet 4 of 8

US 9,330,358 B1

300

310 \< PROVIDE CASE BASE)

A\ 4

320~

NORMALIZE NON-BOOLEAN VARIABLES
FOR EACH CASE OF CASE BASE

321
. 4

330~

DETERMINE NORMALIZED WEIGHT
VECTOR FOR CASE BASE

337

4

RECEIVE A CONTEXT WITH BOOLEAN AND
NON-BOOLEAN VARIABLES

\ 4

350~

NORMALIZE CONTEXTUAL NON-BOOLEAN
VARIABLES

Y

360~

DETERMINE MATCH BETWEEN RECEIVED
CONTEXT AND EACH CASE OF CASE BASE

A 4

370~

DETERMINE SKEW VALUE FOR EACH
CATEGORY OF DOMAIN SPECIFIC
DEPENDENCY VARIABLES

A 4

380~

SELECT DEPENDENCY CATEGORY HAVING
MINIMAL SKEW VALUE

390 DISPLAY VALUE OF SELECTED
) DEPENDENCY CATEGORY

Y

FIG. 4

U.S. Patent

May 3, 2016 Sheet 5 of 8

321\,1

DETERMINE A WEIGHT VECTOR
FOR EACH COMPARISON OF CASES
IN THE CASE BASE

l

333~

NORMALIZE THE WEIGHT VECTOR FOR
EACH COMPARISON

l

334~

SUM, ACROSS EACH COMPARISON,
WEIGHTS OF BOOLEAN AND NON-
BOOLEAN VARIABLES

!

335~

DETERMINE AVERAGE WEIGHT VECTOR
FOR SUMMED WEIGHTS OF BOOLEAN AND
NON-BOOLEAN VARIABLES

l

336~

NORMALIZE AVERAGE WEIGHT VECTOR

US 9,330,358 B1

330

US 9,330,358 B1

Sheet 6 of 8

May 3, 2016

U.S. Patent

9 DId

TOMERAS JIF0AdE THEWIOR & - JURILAISTS 10U JF olanhe

11T #Bundeg Maye 1-7-¢ 10 unog) Buen o £ — pajuon
_H 0 £ ! < ! 01 ! & "
BRI SH] w < g < 0 Cl * * £
o3 JuyBa g i ¢ I z & 0 01 I 1 £
g 0 1 & ! G 0 01 Ls
- N 3 - i 0 - 0 HYS
- - P “ [oog quonl | [pog | g-uek] | amieag
- - & U tpu | Ipwm | Tpur puy
PR | (I dag &« s £ 51 Tan JE1nn

PRoH EOE0T 81 0} paan]] s88E0 pampannkay

i

00y

aaI0Juray
01 218 /vy

US 9,330,358 B1

Sheet 7 of 8

May 3, 2016

U.S. Patent

£ Oid

uonpzIndy sjoydssy

UOROZIUNIGY SIUDIRUT DIBYSS

o £ 1 b =1 720 R N
1w 7 z — 0 Gi # * 1%,
< : z ~— .0 7] i ol <]
7z 0 : — i 4] ! in 1
= = =] - 1] HIUS
Z Z) — | jang g-uoy | joog |g-uon {BIrgos
B B EpG|epa g TRy
R R IV TH S,
/0 lio} &q [0/
4
0 I { g { Ot i S)
w z z e 0 ol * # £a
I3 i Z e 0 0i i Gl £
z ", i e i G 0 Ot in
- — - - 7, - 0 HIS
- - I P joog g—UopN jO0F | g-UoN | [8ImDe4
- - | Ypy i Spur | Cpu | tpw | YT
PN | Add | deg | e Up [Zm ST

/0

[i1o]

g,
i

(ononpqy Jyooqpea] eAnosIr &

N\ SIS UDBIO0S SIDIPUDY 840 SSOUDISUJ

o0s k

oweyss (answuss) dn—-woyog

{wopupy} usog-—dog
DUISYDS JHRID J0 FOUDISUT

2Umps . MK
1830y~ 1808 T

DUIBYIS JUDWQUIOZEY
pabounw Apnboy

UMDY BN
JUBOPY 150K

U.S. Patent May 3, 2016 Sheet 8 of 8 US 9,330,358 B1

600

Define Boolean Weather Change Feature (var x, t):
/* In general, schemas may call other schemas. */
Randomly select x {pressure, humidity, temperature};
t, 12 {t, t-1, t-2, t-3};
Randomly select t1, t2 such that t2 > t1;
I£x(t2) {>, <} x(tl)
Return (1)

Return (0).

FIG. 8

700

Define Boolean Pressure Increase Feature (pressure, t):
If pressure(t) > pressure(t-1)
Return (1)

Return (0).

FIG. 9

US 9,330,358 B1

1
CASE-BASED REASONING SYSTEM USING
NORMALIZED WEIGHT VECTORS

CROSS-REFERENCES TO RELATED
APPLICATIONS

This application is a continuation-in-part of commonly-
assigned U.S. patent application Ser. No. 13/734,669 filed
Jan. 4, 2013, entitled “Case-Based Reasoning System Using
Case Generalization Method”, the content of which is fully
incorporated by reference herein.

FEDERALLY SPONSORED RESEARCH AND
DEVELOPMENT

The Case-Based Reasoning System Using Normalized
Weight Vectors is assigned to the United States Government
and is available for licensing for commercial purposes.
Licensing and technical inquiries may be directed to the
Office of Research and Technical Applications, Space and
Naval Warfare Systems Center, Pacific, Code 72120, San
Diego, Calif.,, 92152; wvoice (619) 553-2778; email
sscpac_T2@navy.mil. Reference Navy Case No. 101988.

BACKGROUND

Artificial intelligence technologies, such as neural net-
works and expert systems, are generally unsatisfactory for
realizing tripwires. Neural networks cannot perform logical
inferences on previous training, while expert systems do not
scale well and are costly to maintain. While case-based rea-
soning systems are an improvement over the aforementioned
technologies, they have not yet fully solved the generalization
problem—that is, how to match a case to a most-similar one
for replay. Accordingly, improvements are needed in case-
based reasoning systems to, for example, provide an effective
capability to automatically compile and review system readi-
ness and performance data to yield system readiness alerts.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a block diagram of the operation of one
embodiment of a system in accordance with the Case-Based
Reasoning System Using Normalized Weight Vectors.

FIG. 2 shows a block diagram of an embodiment of a
distributed processor system in accordance with the Case-
Based Reasoning System Using Normalized Weight Vectors.

FIG. 3 shows a block diagram of an embodiment of a
computing system for implementing and performing a
method in accordance with the Case-Based Reasoning Sys-
tem Using Normalized Weight Vectors.

FIG. 4 shows a flowchart of an embodiment of a method in
accordance with the Case-Based Reasoning System Using
Normalized Weight Vectors.

FIG. 5 shows a flowchart of an embodiment of a step for
determining a normalized weight vector in accordance with
the Case-Based Reasoning System Using Normalized Weight
Vectors.

FIG. 6 shows a diagram illustrating the evolution of
weighted situational variables in accordance with the Case-
Based Reasoning System Using Normalized Weight Vectors.

FIG. 7 shows a diagram illustrating the evolution of
weighted features in accordance with the Case-Based Rea-
soning System Using Normalized Weight Vectors.

FIG. 8 shows a diagram illustrating a simple weather fea-
tures schema in accordance with the Case-Based Reasoning
System Using Normalized Weight Vectors.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 9 shows a diagram illustrating an instance of the
simple weather features schema shown in FIG. 8.

DETAILED DESCRIPTION OF SOME
EMBODIMENTS

Reference in the specification to “one embodiment™ or to
“an embodiment” means that a particular feature, structure, or
characteristic described in connection with the embodiments
is included in at least one embodiment of the invention. The
appearances of the phrase “in one embodiment” in various
places in the specification are not necessarily all referring to
the same embodiment.

Some portions of the detailed description that follows are
presented in terms of algorithms and symbolic representa-
tions of operations on data bits within a computer memory.
These algorithmic descriptions and representations are the
means used by those skilled in the data processing arts to most
effectively convey the substance of their work to others
skilled in the art. An algorithm is here, and generally, con-
ceived to be a self-consistent sequence of steps (instructions)
leading to a desired result. The steps are those requiring
physical manipulations of physical quantities. Usually,
though not necessarily, these quantities take the form of elec-
trical, magnetic or optical signals capable of being stored,
transferred, combined, compared and otherwise manipulated.
It is convenient at times, principally for reasons of common
usage, to refer to these signals as bits, values, elements, sym-
bols, characters, terms, numbers, or the like. Further, it is also
convenient at times, to refer to certain arrangements of steps
requiring physical manipulations of physical quantities as
modules or code devices, without loss of generality.

However, all of these and similar terms are to be associated
with the appropriate physical quantities and are merely con-
venient labels applied to these quantities. Unless specifically
stated otherwise as apparent from the following discussion, it
is appreciated that throughout the description, discussions
utilizing terms such as “processing” or “computing” or “cal-
culating” or “determining” or “displaying” or “determining”
or the like, refer to the action and processes of a computer
system, or similar electronic computing device, that manipu-
lates and transforms data represented as physical (electronic)
quantities within the computer system memories or registers
or other such information storage, transmission or display
devices.

Certain aspects of the disclosed embodiments include pro-
cess steps and instructions described herein in the form of an
algorithm. It should be noted that the process steps and
instructions of the embodiments could be embodied in soft-
ware, firmware or hardware, and when embodied in software,
could be downloaded to reside on and be operated from
different platforms used by a variety of operating systems.
Different parts of the algorithm could be embodied in difter-
ent elements of hardware or software, for example, as in a
distributed system.

The overarching goal of randomization is to reduce data or
knowledge to a more general form, which in the process of
reduction induces hypothetical knowledge (i.e., symmetric
knowledge). If this symmetric knowledge holds, then we say
that randomization has occurred and as a consequence, the
generality and latent intelligence of the knowledge base has
increased. Otherwise, random point(s) of departure serve as
foci for the development of novel knowledge—not previously
known by the base. The acquisition of random knowledge
serves to increase the scope and latent intelligence of the base
too. It follows that since all knowledge can be characterized

US 9,330,358 B1

3

as random or symmetric that this system for knowledge gen-
eration has the theoretical potential to emulate human cre-
ativity and thought.

Cases capture one or more salient (or even not so relevant)
independent variables and associate these situations (fea-
tures) with some action or dependency. There has been pre-
vious work on generalizing case bases as well as inductive
inference as a generalization technique. Some of these
approaches use the case base to constrain the validity of the
evolved rule base. That is, if there should exist a case situa-
tion, which covers a rule antecedent then the rule consequent
is constrained to agree with the case action lest contradiction
on the proper action result. This approach does not allow for
non determinism. However, there are inherent problems with
excluding non determinism.

Nature is inherently non deterministic. Causality is only
rarely definable for an arbitrary situation. While deterministic
systems are clearly useful in such applications as process
control, they are not necessarily practical for modeling appli-
cations involving uncertainty. Further, the evolution of
knowledge requires an allowance for some measure of trial
and error. If only cases and not rules are evolved and permit-
ted such variance, then only previously observed solutions
can be acquired—effectively negating all system creativity
short of possibly erroneous situational generalization.

Additionally, as evolved rule bases grow in size, their con-
stituent rules tend to compete for being triggered by an arbi-
trary context. The problem here is not that this is secondary
non determinism; but rather, valid generalized rules cannot be
known a priori. This implies that any secondary non deter-
ministic selection will be more or less biased by the lack of
generalization knowledge. This is manifested in erroneous
fired consequents, leading to the acquisition of new cases,
which in turn may be improperly generalized—providing
deleterious feedback. Of course, as the case base gets large
enough, the chance of this error is mitigated by the numerous
case constraints. But then, this inherent error reemerges as
excessive search time (and/or as a requirement for extraneous
parallel hardware) to speedup constraint matching and case
generalization.

An alternative approach, which provides for the non-deter-
ministic generalization of case bases, can be justified. That is,
the inherent error of generalization can be accepted if the
system is not admissible (i.e., not necessarily optimal). This
means that rather than attempting to remove all errors of
generalization, one can seek to speed-up the generalization
process for application to very large data’knowledge bases.
Furthermore, the result will be eminently practical if the
generalization process is dynamic and iterative. To be
dynamic, it must accept new situational features and identify
relatively irrelevant features to be replaced or dropped. To be
iterative, it must acquire new cases whenever situational pre-
dictions are deemed to be incorrect. The predictive system
must be efficiently updated whenever an existing case is fired,
a new case is acquired, and/or a least-recently used (LRU’d)
one is expunged.

The main point of departure, which may be surmised from
the preceding arguments, is that it is eminently more practical
to evolve weighted case situational variables and features
than to evolve rules from any defined case base. This follows
because in the absence of additional information/knowledge,
one cannot decrease the entropy of a non-deterministic case
base by converting it to rules. Further, deterministic systems
require the maintenance of the case space for constraint
checking. While rules allow for faster processing, their valid-
ity is subject to greater error than that of the matched cases.

10

15

20

25

30

35

40

45

50

55

60

65

4

Also, case bases can grow much larger than rule bases
because they are devoid of local interactions. Thus, unlike
case bases, the evolution of rule bases necessarily slows with
scale. This slowdown cannot be adequately offset by parallel/
distributed processors because again, all known quality rule
inference algorithms are of super-linear complexity. The only
exception is found in the use of knowledge bases for rule
inference. But then, this approach is voided because the prob-
lem is merely passed to the next higher level—how to acquire
the knowledge for the knowledge bases.

Situational features are in a constant state of evolution in
any non trivial case-based system. Weights need to evolve to
favor salient features and identify relatively irrelevant ones
for deletion. To begin, the case-based approach will be devel-
oped for an arbitrary case base. All non-Boolean data is
converted to positive real numbers. If the data exists along a
continuum, then if “a” is closer to “b” than “c” conceptually,
then the same relation must hold numerically.

The only question that arises, in this regard, is how to
assign integers to words, phrases, or sentences in satisfaction
of'this requirement. First, notice that any partial ordering here
is domain specific. For example, the colors of the rainbow
may be labeled and arranged in accordance with their fre-
quency in angstroms. This arrangement is likely to differ from
an arrangement based on clothing sales predicated on color.
In a related vein, if the South Pole of the Earth is assigned +1
and the North Pole is assigned +3, then the equator must be
assigned +2 based on geometric locality. However, ifbased on
average annual temperature say, then the South and North
Poles of the Earth may be assigned +1 and the equator may be
subsequently assigned +3. Notice that temperate zones have a
resulting value of +2. There are a countably infinite number of
such domain mappings, based on conceptualization, and each
situation must be evaluated on the basis of its salient details.
Bidirectional translation between conceptual entity and real
number representation may be achieved using a (hash) table
lookup. For example, +1 might represent a very cold average
annual temperature and +3 might represent a very hot average
annual temperature—with real number graduations in
between. In the large, such translation can be performed by
case base segments.

Care must be taken in scaling the non-Boolean variables
that the lower-end of the range is low enough (or subsequent
contexts will not be properly mapped), but not excessively
low (or mapped variables will lose precision). Negative
lower-ends are permissible so long as they (and associated
vector elements) are shifted to positive values for use by the
methodology (e.g., {-100%, 0%, +100%} becomes {+1,
+101, +201}). Similarly, based on average annual tempera-
ture, the South and North Poles of the Earth may be assigned
-1 and the equator may be assigned +1. Here, {-1, +1, -1}
becomes {+1, +3, +1}. Situational variables and features are
assumed to be linear though exponential and logarithmic
evaluations may find occasional use when dealing with very
small or very large numbers. Note that the maintenance of
such shifting operations entails additional computational
overhead though not enough to change the algorithms order
of magnitude complexity.

Features should augment the associated situation(s). These
features should never be manually dropped. If they are
released and/or replaced, this decision must be based on
receiving a relatively insignificant weight. For example, a
temperature variable might need to distinguish the three natu-
ral states of water—solid, liquid, and gas. Here are a few
tuples that serve to illustrate the aforementioned associations,
Schema: (Temperature ° F., Freezing?, Boiling?), (32°, 1, 0),
(72°, 0, 0), and (212°, 0, 1). The use of Boolean features is

US 9,330,358 B1

5

very common and effective. Suppose that a case base is
needed for a number-theoretic problem requiring the identi-
fication of prime numbers. An algorithm for identitying prime
numbers, such as the Sieve of Eratosthenes, defines the fea-
ture. For example, Schema: (Integer, Prime?), (3, 1), (4, 0),
(17, 1), (10, 0), (23, 1), and (24, 0).

Suppose that we had the following case base, where c, are
cases, w, are weights, the i, are situational variables (features),
and d is the associated dependency category within some
class (e.g., automotive diagnostics). Here, an asterisk, “*”,
represents a situational variable whose value is unknown, or
was not recorded. Also, cases are acquired at the logical head,
moved to the logical head when fired, and expunged from the
logical tail when necessary to release space (see FIG. 6).
Table 1 presents the schema for an arbitrary case base. The
cases are shown in logical order, which is used by the uniform
or 3-2-1 skew. The use of this skew is optional (i.e., in com-
parison with uniform weighting) and is useful for domains
where the value of the data deteriorates in linear proportion to
its time of collection—valuing more recent data, more highly.
The selection of a particular skew is domain specific. For
example, the rate of radioactive decay is known to be propor-
tional to how much radioactive material is left (excluding the
presence of certain metals). The nuclear decay equation may
be used as a skew for various radioactive materials and is
given by A(t)=A e. Here, A(t) is the quantity of radioactive
material at time t, and A,=A(0) is the initial quantity. A
(lambda) is a positive number (i.e., the decay constant) defin-
ing the rate of decay for the particular radioactive material. A
countably infinite number of other skews may be applicable.

In the following assignment of skew-weights, the skew
vector, S, favors the logical head of the case base in keeping
with Denning’s principle of temporal locality. Cases, which
were most-recently acquired or fired, and thus appear at or
nearer to the logical head of a case-base, are proportionately
more heavily weighted under the 3-2-1 skew. Of course, this
differs from a uniform skew. The closer a case is to the top of
its linked list, the greater its weight or importance. A heuristic
scheme (i.e., the 3-2-1 skew) for achieving this with a depen-
dency category consisting of d cases is to assign the head case
a weight of

2d
dd+1)

The map just below the head map has a weight of

2Ad-1)
dd+1)

Finally, the tail map of the segmented case base has a weight
of

2
dd+ 1y

The ith map from the head has a weight of

Ad-i+1)
dd+1

25

35

40

45

50

55

60

65

6
fori=1,2,...,d. For example, using a vector of four weights,
the 3-2-1 skew (S) is S=(0.4, 0.3, 0.2, 0.1)7. There are a
countably infinite number of possible skews, such that
2z =1.0.

*The evaluation of the members of a dependency category is
the contiguous weighted sum of its constituent elements (see
below). A subsequent example will show how the weights are
computed using the uniform and 3-2-1 skews, which again
may be selected because they best fit domain characteristics.
The weights are uniform if the skew is not known, or if there
is no decay in the value of a case once recorded.

Table 1 shows a doubly-linked list. Zero indicates a list end.
The list-head of the previous list is m and of the next list is
one. The list-head of the free list (i.e., unused array elements)
begins with the list-head of the previous list if the rows are
fully utilized. Otherwise, the list-head of the free list points to
the first row in the list of unutilized rows, in sequence. It
simply contains every freed row, in arbitrary order.

Shift values are maintained for each non-Boolean variable
(Table 1). These shifts are initialized to one minus the mini-
mum field values, or zero—whichever is greater. If the result-
ant shift exceeds zero, each non-Boolean variable is initially
shifted up by the computed shift value. Whenever a new
contextual or situational variable has value less than or equal
to the negation of its corresponding shift, then the shift takes
the absolute value of that variable plus one. Non-Boolean
variables not previously shifted (e.g., the context) will be
shifted up by that amount, while all previously shifted ones
(e.g., field values) will be shifted up by the values new—old
shifts. Whenever a case is expunged, if the expunged non-
Boolean variables have values of one, then new field mini-
mums are found (i.e., an O(m) process) and if their values
exceed one, the associated shifts and the previously shifted
variables are both reduced by the amount that those values
exceed one. Thus, all non-Boolean non-asterisk variables will
have value of at least one. This prevents divide-by-zero errors
in normalization as well as problems in adjusting zero-valued
weights.

TABLE 1
Wts: W) Wy W3 w, — Dep. Prv. Nxt
Ind: ind, ind, ind; ind, —= — —
Feature: Non-B Bool Non-B Bool — d — —
Shift: 0 — 0 — .. — — —
[10 0 5 S 1 — 1 0 2
cy 15 1 10 S 0 — 2 1 3
c3 * * 15 0 - 2 2 m
Cru 5 1 10 1 — 1 3 0
Next, define a context by c; for j=1, 2, . . ., n. The nearness

of a pair of cases, ¢; and ¢, where the context is taken as ¢, is
given by

(Eq. D

n
Z welcix = cjxl
=1

————— - JiE
|participating situational variables|

match(i) = J-

It follows that since all weights and participating variable
differences are normalized, match(i)e[0,1]. A participating
situational variable is one that does not include an “*” in its
field. If there are no such fields, then the pair of cases is
omitted from the computation. If there are no such pairs of
cases, then the match cannot be computed and thus is unde-
fined.

US 9,330,358 B1

7

The ranges of non-Boolean variables are normalized using
double-precision computations. The non-Boolean vectors are
to be defined by positive elements. This is necessary to insure
that any paired case differential, Ic, ;~c; |, will never exceed
unity. There are to be at least one non-Boolean vector con-
taining no asterisks. This is necessary to prevent divide-by-
zero errors. The sums used for normalization are saved for the
subsequent normalization of any context. The sums for situ-
ational variables ind, and ind; in Table 1 are 30 and 40,
respectively (asterisks are skipped). Normalization of these
variables is shown in Table 2. Boolean and non Boolean
contextual differences will all be comparable (i.e., resulting
in a uniform contribution of their importance, conditioned by
their associated weight), since no paired case differential,
Ic, 4=, 41, will ever exceed unity.

The dependency category selected to be fired will be the
weighted match (i), which has a minimal category value (see
below). In the event of a tie, the dependency averaging (i.e.,
substituting the case dependencies relative position from the
logical head for its match (i) value), nearer (at) the logical
head of the case base is selected as the winner as a result of
temporal locality. The single case dependency, which is
nearer (at) the logical head, is selected as the winner in the
event of a second tie (e.g., d=1 in Table 2 because (1+4)/2=
(2+3)/2, but ¢, is the logical head). Using 3-2-1 skew weight-
ing, d=1 wins again because (34%*1+V53*4)<(35%2+14%3).
Relative fused possibilities are produced (e.g., using the uni-
form or 3-2-1 skew), which evidence that the decision to favor
one category dependency over another may be more or less
arbitrary. Of course, in some domains it may be more appro-
priate to present the user with an ordered list of alternative
dependency categories, along with their weighted match (i)
values, and let the user decide. The decision is necessarily a
domain-specific one.

There are domains for which it is useful to know that the
case base does not embody the desired matching case(s) and
all but perhaps the slightest “guessing” is to be enjoined. This
can be achieved by placing a squelch, greater than or equal to
zero, on the minimum match (i). Here, if this minimum com-
puted match (i) just exceeds the set squelch, then the system
will respond with, “I’m very unsure of the correct action”.
The correct action dependency (d) will be paired with the
context and acquired as a new case, at the earliest opportunity,
if the dependency should prove to be incorrect. This depen-
dency may or may not comprise a new action category. The
logical tail (LRU’d member) of the case base may be
expunged, as necessary, to make room for the new case acqui-
sition. The qualifying phrases are, “very unsure”, “somewhat
unsure”, “somewhat sure”, “very sure”, depending on the
difference, (minimum match (d)-squelch, where d represents
a dependency category). Notice that an exact match would
have a difference of -squelch. Thus, any difference<-
squelch/2 would be associated with the qualifier, “very sure”.
Any -squelch/2=difference=squelch/2 would be associated
with the qualifier, “somewhat sure”. Any squelch/
2=difference=xsquelch would be associated with the qualifier,
“somewhat unsure”. Finally, any squelch<difference would
be associated with the qualifier, “very unsure”. The most
appropriate value for the squelch may be determined experi-
mentally and is domain specific.

The acquisition of a new case here not only insures that its
situational context will be known until, if ever, the case falls
off of the logical tail of the case base, but contexts in its
immediate field (i.e., having minimal differences with it) will
likewise be associatively known. Cases identified as errone-
ous may be a) overwritten with the correct dependency, if
known, b) expunged, or ¢) bypassed through the acquisition
of'a correct case at the logical head of the case base so that the
erroneous case will eventually fall off of the logical tail of the
case base. The choice of methodology here is domain specific

10

15

20

25

30

35

40

45

50

55

60

65

8

in theory. In practice, alternative (a) is the usual favorite,
where the domain is deterministic. Alternative (b) is the usual
favorite, where correct actions are not forthcoming. Alterna-
tive (c) is the usual favorite, where the domain is non deter-
ministic (assumed herein).

Next, consider the arbitrary case base shown in Table 2.
Two dependency categories and two case instances mapping
to each category are observed. The goal is to find a normalized
set of weights, w,, which will serve in mapping an arbitrary
context to the best-matching case situation and thus to the
most appropriate action category, if any. The squelch may be
taken to be 0.1 here on the basis of trial and error for this
example. If the minimum computed match (i)>0.1, then the
system will reply to the effect that it is very unsure of the
correct action. A correct case will be acquired at the logical
head, if the correct action is known, should the dependency
prove to be incorrect. In this event, the LRU’d case at the
logical tail may be expunged to make room.

TABLE 2

Wts: W Wy W3 Wy Dep.
Ind: ind, ind, ind; ind,

Feature: NB Bool NB Bool —- d
cy 0.333 0 0.125 1 —- 1
cy 0.5 1 0.25 0 —- 2
c3 * * 0.375 0 —- 2
cy 0.167 1 0.25 1 —- 1

Ideally, each case situation is to be compared with each
other case situation, exactly once, for the purpose of comput-
ing the global weight vector, W. The number of comparisons
here is m-1+m-2+ . .. +2+1, or

m(m—1)
R

which is O(m?) on a serial machine. This is only tractable for
limited values of m. However, an excellent heuristic, for
reducing the order of magnitude of comparisons on large case
bases without significantly reducing the quality of results, is
to compare the ciel (square root of the number of category
members) with that defining number of members in each
category including its own, though compared cases must be
distinct. This is particularly useful for supporting the evolu-
tion of new features because it trades the time required for an
exact evaluation of the weights for an (initial) rough estima-
tion of any new features worth—allowing many more candi-
date features to be explored.

Once the feature set is stable, if ever, the full serial O(m?)
category comparisons may be resumed. If m parallel proces-
sors can be utilized, then the runtime complexity here can be
reduced to O(m). This is certainly tractable, where we define
tractability based on an efficient sort executing on a serial
machine (e.g., MergeSort having average and worst case
times of O(N log N)).

The count of comparisons is made in order from the logical
head, since these are the most recently acquired/fired cases
and thus are intrinsically the most valuable based on temporal
locality. For example, in Table 2, cases ¢, and ¢, are members
of'the first category dependency and cases c, and ¢, are mem-
bers of the second category dependency. Thus, ¢, is compared
against

[V2]=2

US 9,330,358 B1

9

members of its dependency category as well as two members
of the second dependency category. Note that when a cat-
egory member is being compared against its own category,
the initial category member may be counted towards the
computed limit in the number of comparisons (though
skipped when i=j). Furthermore, if each category is dynami-
cally linked based on order from the logical head so that one
need not traverse other category members to get to the next
member of the same category and each such category main-
tains a pointer to the next category in order, then, the number
of comparisons is

which is O(m) on a serial machine. (In practice, this is not too
difficult to accomplish using two passes through the case
base, or O(m) extra storage.) If m parallel processors can be
utilized, then the runtime complexity can be reduced to O(log
m). If m® parallel processors can be utilized, then this can be
reduced to O(c), or constant time. Naturally, the use of m?
parallel processors would only be practical for limited values
of m.

Returning to the example in Table 2, ¢, will be compared
againstc,, then against ¢;, and next against c,,. Then, ¢, will be
compared against ¢, then against c,. Finally, c; will be com-
pared against c,. Note that c, is not compared against c,
because this would serve to distort the resultant weights
towards uniformity. Uniformity vies against variable (fea-
ture) selection. Also, the evolution of the weights is context
free in terms of other weights. However, it is actually context
sensitive because predicted dependency categories found to
be in error are re-acquired as new cases having correct depen-
dencies. The situational part of these new cases defines a new
well for matching similar cases. Absolute values are not
raised to any power on account of the availability of Boolean
features, whose differences are immutable under any power.
This also provides for faster computation as the power func-
tion is relatively slow in comparison with the arithmetic
operators.

If the two situations belong to distinct categories (d), we
want to assign maximal weights, w,, to the situational vari-
ables that are the most quantitatively different. However, if
the two situations belong to the same category (d), we want to
assign maximal weights, w,, to the situational variables that
are the most quantitatively the same. In this second case, all of
the non-asterisk variables need to be subtracted from one, in
order to weight the variables that are most similar most
heavily. The process is depicted in FIG. 6.

First, compare ¢, against c,. These two situations belong to
distinct categories (d). Going through ind, to ind, in Table 2
for cases ¢, and c,, computing |c, —c,| gives w, through w, as:
10.333-0.51=0.167, 10-11=1, 10.125-0.251=0.125, 11-0I=1.
We note that the qualitative features are at least as important
as any other situational variable. This is evidenced by their
more extreme absolute values relative to the non-Boolean
situational variables. Here, W=(0.167, 1, 0.125, 1).

Next, compare ¢, against ¢;. These two situations belong to
distinct categories (d). Going through ind, to ind, in Table 2
for cases ¢, and ¢, computing Ic, —c, | gives w, through w, as:
* %,10.125-0.3751=0.25, 11-01=1. Here, W=(*, *, 0.25, 1).

Next, compare ¢, against c,. These two situations belong to
the same category (d). Going through ind, to ind, in Table 2
for cases ¢, and ¢, computing |c, —c,| gives w, through w,, as:
10.333-0.1671=0.166, 10-11=1, 10.125-0.251=0.125,
[1-11=0. Here, W=(0.834, 0, 0.875, 1).

10

15

20

25

30

35

40

45

50

55

60

65

10

Next, compare ¢, against c;. These two situations belong to
the same category (d). Going through ind, to ind, in Table 2
for cases ¢, and ¢, computing |c,—c;| gives w, through w,, as:
,%10.25-0.3751=0.125, 10-01=0. Here, W=(, *, 0.875, 1).

Next, compare ¢, against c,. These two situations belong to
distinct categories (d). Going through ind, to ind, in Table 2
for cases ¢, and ¢, computing |c,—c,| gives w, through w, as:
10.5-0.1671=0.333, 11-11=0, 10.25-0.251=0, 10-11=1. Here,
W=(0.333, 0, 0, 1).

Next, compare c, against c,. These two situations belong to
distinct categories (d). Going through ind, to ind, in Table 2
for cases c, and ¢, computing Ic;—c,| gives w, through w, as:
* %10.375-0.251=0.125, 10-11=1. Here, W=(*, *,0.125, 1).

Now, compute the normalized weight vectors. First, the
raw computed weight vectors, W, are given in Table 3. Next,
each c, ; is normalized going across for j=1 to n. Table 4
presents the results. The computed weights are then summed
and divided by the number of non-asterisked, situational vari-
ables and normalized to yield the final normalized four
weights.

Suppose the situational context is defined by ¢, in Table 2.
The correct dependency category is 1. Let’s see how this
might be predicted. First, let us compare ¢, against ¢,. The
raw context, ¢;=(10, 0, 5, 1). Next, we perform a column-
normalization by dividing the non-Boolean variables by the
previously saved column sums. Thus, ¢;=("%o, 0, %o, 1)=
(0.333,0, 0.125, 1). Going across w, to w, in Table 2 for ¢,
Ic;—c,| is computed as: 10.333-0.333|=0, 10-01=0, 10.125-
0.1251=0, 11-11=0. Thus, match (i=1)=0, which is minimal
and thus is correctly matched. (Note that skewed averages are
still necessary if non determinism is allowed. Here however,
the case situation, c,, occurs only once in Table 2—insuring
that the correct dependency is d=1).

Next, compare the situational context=(10, 1, 5, 0) against
the four cases in Table 2 to find the best match and thus the
predicted value for the dependency. Boolean matches are
more significant and thus we would expect the dependency
category to be two here.

Compare this situational context against ¢, . Next, we per-
form a column-normalization by dividing the non-Boolean
variables by the previously saved column sums. Thus, ¢,=
(1%.o, 1, %40, 0)=(0.333, 1, 0.125, 0). Going across w; to w,, in
Table 2 forc,, Ic, —context| is computed as: 10.333-0.333|=0,
10-11=1,10.125-0.1251=0, 11-0I=1. Thus,

TABLE 3
Wits: W W5 W3 Wy Tnit. =
Ci2 0.167 1 0.125 1 2.292
c3 * * 0.25 1 1.25
Cia 0.834 0 0.875 1 2.709
C3 * * 0.875 1 1.875
Coa 0.333 0 0 1 1.333
C34 * * 0.125 1 1.125
TABLE 4
Wts: W, Wo W3 Wy Fin. 2
C12 0.0729 0.4363 0.0545 0.4363 1.0
CL3 * * 0.2 0.8 1.0
Cia 0.3079 0 0.323 0.3691 1.0
C3 * * 0.4667 0.5333 1.0
Coa 0.2498 0 0 0.7502 1.0
C3a * * 0.1111 0.8889 1.0
0.6306 0.4363 1.1553 3.7778 6.0
Avg: 0.2102 0.1454 0.1926 0.6296 1.1778
Norm: 0.1785 0.1234 0.1635 0.5346 1.0

US 9,330,358 B1

11

0.1785(0) +0.1234(1) + 0.1635(0) + 0.5346(1)

=0.1645.
4

match(l) =

The denominator is four here because none of the situational
variables union the context, in Table 2, has an asterisk and
thus are all participating.

Next, compare this situational context against ¢,. Going
across w, to w,, in Table 2 for ¢, Ic,—context| is computed as:
10.5-0.3331=0.167, 11-11=0, 10.25-0.1251=0.125, 10-0I=0.
Thus,

match(2) =

0.1785(0.167) + 0.1234(0) + 0.1635(0.125) + 0.5346(0)

=0.0126.
4

Next, compare this situational context against c,. Going
across w, to w, in Table 2 for c;, Ic;—context| is computed as:
*,%,10.375-0.1251=0.25, 10-01=0. Thus,

0.1785(0) + 0.1234(0) + 0.1635(0.25) + 0.5346(0)
2

match(3) = =0.0204.

The denominator is two here because a total of two situational
variables union the context, in Table 2, have asterisks and thus
are not participating—being substituted for by zero above.
Four situational variables reduced by two non-participating
ones, leaves two participating situational variables.

Next, let us compare this situational context against c,.
Going across w, to w, in Table 2 for c,, |c,—context| is com-
puted as: 10.167-0.3331=0.166, [1-11=0,
10.25-0.1251=0.125, [1-0I=1. Thus,

match(4) =

0.1785(0.166) + 0.1234(0) + 0.1635(0.125) + 0.5346(1)
4

=0.1462.

Next, we compute the uniform skew value for each cat-
egory. ¢, and ¢, have d=1 and ¢, and c¢; have d=2. Thus, match
(category,)=(match (1)+match (4))/2=(0.1645+0.1462)/
2=0.1554. Match (category,)=(match (2)+match (3))/2=
(0.0126+40.0204)/2=0.0165. The second category (i.e., d=2)
is the better selection by a factor of almost ten. Here, the
minimum match (i)-squelch=0.0165-0.1=-0.0835<~
squelch/2 and thus we would be “very sure” of it being the
correct category. Also, the first category is above the set
squelch of 0.1 and thus we would be “very unsure” of it being
the correct category.

Had the 3-2-1 skew been used instead of the uniform skew,
then the first member of each category would have been
weighted more heavily, since it is closer to the logical head.
The 3-2-1 skew only considers an element in positional rela-
tion to elements in the same category. The 3-2-1 skew for two
elements is (%4, %). Thus, match (category')=
(0.6667%0.1645+0.3333%0.1462)=0.158. Match (cat-
egory,)=(0.6667*0.0126+0.3333*0.0204)=0.015. Here, the
use of the 3-2-1 skew has once again selected the second
category (i.e., d=2), as desired. We are slightly more sure of it
being the correct category under the 3-2-1 than uniform skew
because 0.015-0.1=-0.085<-0.0835<-squelch/2.

12

Suppose however that it was learned that the correct depen-
dency for the context was not d=2, but rather something
else—say d=3, without loss of generality. Table 5 shows the
resulting logical ordering of the updated case base. (Note that
Table 5 would depict a non deterministic case base if the
context was an exact match for an existing situation, but the
associated action differed.) If this table was limited to the
storage of four cases, then case c; would be expunged to make
room for case c,. Physical case movement or search is not
required. Again, this would involve updating the pointers to a
doubly-linked global list.

In Table 5, the global head pointer would be updated to
point to case ¢, upon acquisition. Case acquisition or firing
results in logical movement to create a new list head, where
not redundant. The next pointer is updated to point to the
previous head, or c,. The next lower case having the same
dependency, or case cs, is eventually visited through global
traversal. Counts of the number of members having the same
dependency are maintained for the computation of the uni-
form or 3-2-1 skew. Case c is last on the global list. Thus, it
can be expunged by adding it to the free list and changing the
last on the list to point to its immediate predecessor, or case c,.
Thus, the tail is updated to point to c,,.

Suppose that case ¢, were to be fired. It is logically moved
to the head of the global list. Thus, the head pointer is set to c,.
Case c,s next pointer is set to the previous head, or case c;.
Case c,s predecessor’s next pointer (case c;) is set to point to
case c,s successor (case Cs).

Notice how the chance of generating an erroneous depen-
dency (and its associated possibility) decreases with each
case acquisition—given a segmented and relatively stable
domain. This is because each case situation induces a proxi-
mal matching field for every context. The utility of this match-
ing field is proportionate to the combined degree to which the
situational variables were discriminators during training.
This completes our example of case acquisition.

Next, consider the situational variables, ind,. Again, using
m parallel processors, a runtime complexity of O(log m) is
achievable. This is very fast and such speed can be put to good
use in the evolution of new and better features. Table 4 shows
the weights, W=(0.1785, 0.1234, 0.1635, 0.5346). In order of
non-increasing significance they are w,, w,, w,, and w,.
Observe that despite the missing data for the first two weights
for one case (i.e., c; in Table 2), w, is not among the first two
weighted-features to be replaced. w, is the least-significant
non-zero weighted-feature, or the first to be replaced. Zero-
valued weights need time to compute at least one comparative
evaluation before being adjudicated. We have seen that miss-
ing data does not affect the value assigned to a weight, as
desired. The capability to handle this situation is generally
required for feature evolution.

30

40

TABLE 5
55 Wts: W Wy W3 Wy Dep.
Ind: ind, ind, ind; ind,
Feature: NB Bool NB Bool —- d
cy 0.333 1 0.125 0 —- 3
cy 0.333 0 0.125 1 —- 1
60 c3 0.5 1 0.25 0 —- 2
cy * * 0.375 0 —- 2
Ccs 0.167 1 0.25 1 —- 1

One evolutionary strategy is to run numerous distinct

5 tables, having n situational variables each, in parallel. Each
table holds predominantly distinct situational variables (fea-
tures), though limited duplication is permitted to accelerate

o

US 9,330,358 B1

13

feature generation time. After all of the variables have
received computed weights, the n greatest weights, and asso-
ciated distinct variables (features) are concatenated in one
table and renormalized. At least one non-Boolean situational
variable containing no asterisks is required in the final table.
Care must be exercised that no feature is “dangling”—due to
reference to a missing situational variable(s), or even other
feature(s).

The requirement to compute new normalized elements
requires that the original data (see Table 1) be the starting
point each time—along with the appropriate sums (i.e., in
view of a change in the included fields). This strategy is most
useful where many parallel/distributed processors are avail-
able. A stable sort, such as the n-way MergeSort, is used to
sort the weight vectors. A stable sort maintains the relative
order of records with equal values. This is important for
feature evolution. Here, new situational features are inserted
at the right. Thus, in the event of a tie, preexisting situational
features will be more highly valued, since they have survived
the longer test of time. Again, MergeSort has best and worst
case times of O(N log N) and MergeSort’s best case takes
about half as many iterations as its worst case.

If no situational variable that is referenced by a feature(s) is
allowed to be replaced and no feature that is referenced by
another feature(s) is allowed to be replaced, then a second
serial-processor strategy may be more efficient. The (non-
zero lowest-weight) non-referenced variables and features
can be replaced (or augmented) with new variables and/or
features. To be replaced, the non-referenced variable or fea-
ture must have a weight, which is less than the average weight
of all variables and features (except itself) having non-zero
weights. Thus, better results can be expected if the number of
features referencing other features is minimized (or elimi-
nated). This is necessary to insure that relatively valuable
non-referenced variables are not lost.

Here, a few of the non-zero lowest-weight features can be
found using a single-pass algorithm, which is O(n) on a
sequential machine. The computation of Table 6 follows the
same process as was illustrated for the computation of Table
3. The sums are unatfected. Tables 6 and 7 contain a replaced
feature, ind,. The new feature, though far from perfect, evi-
dences better discrimination than the one it replaced. The
theoretical ideal weight vector, W, would have minimal car-
dinality such that all w; are equal. Ideally, a single situational
variable would suffice to determine the dependency category.
Table 7 computes the new weight vector, W=(0.1163,0.2995,
0.1411, 0.4431).

TABLE 6
Wits: W W5 W3 Wy Init. =
c 0.167 1 0.125 1 2.292
Ci3 * * 0.25 1 1.25
Cia 0.834 1 0.875 1 3.709
C3 * * 0.875 1 1.875
o 0.333 1 0 1 2.333
C3a * * 0.125 1 1.125
TABLE 7
Wits: W W5 W3 Wy Fin. =
C12 0.0729 0.4363 0.0545 0.4363 1.0
c3 * * 0.2 0.8 1.0
Cra 0.2249 0.2696 0.2359 0.2696 1.0
C3 * * 0.4667 0.5333 1.0
Coa 0.1428 0.4286 0 0.4286 1.0

20

25

30

35

40

45

50

55

60

65

TABLE 7-continued
Wts: W W5 W3 Wy Fin. =
C3a * * 01111 0.8889 1.0
> 0.4406 1.1345 1.0682 3.3567 6.0
Avg: 0.1469 0.3782 0.1780 0.5595 1.2626
Norm: 0.1163 0.2995 0.1411 0.4431 1.0

Table 8 shows the acquisition of a new case by our arbitrary
case base as set forth in Table 1. This case includes a new
Boolean feature, inds. Notice that this feature could not be
computed for any but the new case due to the unavailability of
data. Nevertheless, the system is designed so that the com-
puted weight, w,=0, can co-exist with the other weights, W,
despite the single data point. In fact, having few data points
(e.g., the square root of the number of category members),
turns out to be an advantage for the evolution of new features.
This is because having few data points supports a more uni-
form coverage of the feature search space. Features are gen-
erated through the instantiation of schema, which involve
situational variables and relational operators. Features may
also be taken from case-base dependencies. A simple weather
features schema 600 is shown in FIG. 8, while an instance 700
of schema 600 is shown in FIG. 9.

TABLE 8

Wts: W) Wy W3 Wy Ws Dep.
Ind: ind, ind, inds ind, inds

Feature: NB Bool NB Bool Bool - d
cy 20 1 20 0 1 —- 2
cy 10 0 5 1 * —- 1
c3 15 1 10 0 * —- 2
cy * * 15 0 * —- 2
Ccs 5 1 10 1 * —- 1

Through careful schema definition and instantiation, many
features can be generated for exploration. Note thatit is better
to generate more schemas than rely on schema instances to
cover the schema search space. This is because having a
greater number of schemas embodies greater knowledge,
which serves to constrain the search space. Schema definition
languages may be written. They can even be used to write
schemas that write schemas—much like a Van Wijngaarden
two-level grammar. Given the availability of high-speed mas-
sively parallel computers, such problems as mapping massive
data to knowledge are, in principle, solvable using the meth-
odology defined herein.

Again, fired dependency categories can serve as situational
features for another case base—including itself. For example,
if rain is predicted, it is more likely that I will take an
umbrella. Here, the prediction of rain is a category depen-
dency for one case base and serves as a feature for another.
Similarly, if I see others with umbrellas, it is more likely that
rain is predicted. This heterarchical interaction, among dis-
tributed case base segments, defines a generalized and-or
graph (GAG). The GAG is searched for dependencies that can
serve as situational features for its constituent subgraphs (seg-
mented case bases). A self-referential network is so defined.
GAGs are theoretically equivalent to Type O grammars. It
follows that they can solve, in principle, any solvable problem
for which there is a symbolic representation—though they are
necessarily subject to essential incompleteness.

The GAG provides an executable model of brain function
and post-tetanic potentiation (neural learning). Seemingly
random firing patterns, observed to occur in the brain, may
simply be a random/symmetric search for dependencies to

US 9,330,358 B1

15

serve as features. That is, successful situational features are
more likely to be taken from segmented case base dependen-
cies, where they were previously discovered. Here, new cases
and segmented bases can be formed through the association
of triggered dependency categories and the most-recent dis-
tinct actions.

Thus, if I see others with umbrellas, it is more likely that I
will take an umbrella. Such modus ponens is theoretically
impossible without the use of symbolic category dependen-
cies and symbolic features. Thus, this simple example could
not be realized using neural networks. It follows that general
intelligent learning systems can be constructed using mas-
sively parallel networks, symmetric schema definition lan-
guages, and the principles that serve as the basis for this patent
disclosure. FIG. 7 looks ahead and depicts the interrelation-
ship among top-down and bottom-up schema instantiation
and optimization.

Below is an example of an algorithmic codification of one
embodiment of the method disclosed herein.

1. Define Tripwire:

2. /* This algorithm evolves knowledge from data suitable for
use in a tripwire alert system.

3. Cases capture one or more salient (or even not so relevant)
independent variables and associate these situations (fea-
tures) with some action (dependency). */

4. A hash table lookup may be used to convert concepts to
integers and real numbers. Numerical assignments must be
in proportion to each other (see narrative). All non-Boolean
vectors so produced may not have any non-positive ele-
ments.

5. Shift values are maintained for each non-Boolean variable.
These shifts are initialized to one minus the minimum field
values, or zero—whichever is greater. If the resultant shift
exceeds zero, each non-Boolean variable is initially shifted
up by the computed shift value. Whenever a new contextual
or situational variable has value less than or equal to the
negation of its corresponding shift, then the shift takes the
absolute value of that variable plus one. Non-Boolean vari-
ables not previously shifted (e.g., the context) will be
shifted up by that amount, while all previously shifted ones
(e.g., field values) will be shifted up by the values new—
old shifts. Whenever a case is expunged, if the expunged
non-Boolean variables have values of one, then new field
minimums are found (i.e., an O(m) process) and if their
values exceed one, the associated shifts and the previously
shifted variables are both reduced by the amount that those
values exceed one. Thus, all non-Boolean non-asterisk
variables will have value of at least one.

6. At least one non-Boolean situational variable containing no
asterisks is required. It may be used to compute one or more
Boolean situational variables. The range of the non-Bool-
ean situational variables is defined by positive real num-
bers.

7. An arbitrary number of Boolean variables (i.e., features)
may be included. They are defined by values of zero or one.
Features may be evaluated by domain-specific code, by
database query, and where being human bound is accept-
able, by user questions.

8. A case is defined by I—=d, where I is a set of situational
variables (Boolean features) and d is an associated domain-
specific dependency—one per case. Each member of I is
typecast as Boolean or non Boolean. Each member of I is
assigned a normalized weight, w;, such that Zw,=1.0. New
weights are initialized to zero.

9. An asterisk, “*”, represents a situational variable whose
value is unknown, or was not recorded.

w

10

15

20

25

30

40

45

50

55

60

65

16
10. Cases are acquired at the logical head, moved to the
logical head when fired, and expunged from the logical tail
when necessary to release space.
11. The nearness of a pair of cases, ¢, and c;, where the context
is taken as c,, is given by

n
Z wilcik = ¢kl
=1

F PR - N
|participating situational variables|

match(i) = * .

It follows that since all weights and participating variable
differences are normalized, match(i)e[0,1]. A participating
situational variable is one that does not include an “*” in its
field. If there are no such fields, then the pair of cases is
omitted from the computation. If there are no such pairs of
cases, then the match cannot be computed and thus is unde-
fined.

12. In general, a uniform or 3-2-1 skew is used. The latter is
useful for domains where the value of the data deteriorates
in linear proportion to its time of collection—valuing more
recent data, more highly. Here, the ith map from the head
has a weight of for

Ad-i+ 1)
dd+D

i=1, 2, ... d. The evaluation of the members of a dependency

category is the contiguous (i.e., where position is relative to

members of the same category and is otherwise ignored)
weighted sum of its constituent elements.

13. The dependency category selected to be fired will be the
weighted match (i), which has a minimal category value. In
the event of a tie, the dependency averaging (i.e., substi-
tuting the case dependencies relative position from the
logical head for its match (i) value), nearer (at) the logical
head of the case base is selected as the winner as a result of
temporal locality. The single case dependency, which is
nearer (at) the logical head, is selected as the winner in the
event of a second tie.

14. Set squelch=0. The most appropriate value for the squelch
may be determined experimentally and is domain specific.

15. L1: The ranges of non-Boolean variables are normalized
using double-precision computations. There must be at
least one non-Boolean vector containing no asterisks.

16. Save the sums of non-Boolean variables (asterisks are
skipped) for the subsequent normalization of any context.

17. Each case situation is to be compared with each other (i.e.,
¢, with ¢, such that 0<i<j, using an absolute ordering for m
(m-1)/2 case pairings) if the feature space is stable and
sufficient processor power is available. Otherwise, com-
pare the ciel (square root of the number of category mem-
bers) with that defining number of members in each cat-
egory—including its own, though compared cases must be
distinct. Here, we have O(m) case pairings (i.e., ¢, with ¢,
such that O<ix<j, and

j=[Vidd].

where d, represents the dependency categories using a rela-
tive ordering and only distinct cases are to be compared). The

US 9,330,358 B1

17

paired category members are visited contiguously from the
logical top until the limiting number is reached.

18. If the cases to be compared belong to distinct categories,
maximal weights are assigned to the situational variables
that are the most quantitatively different. Thus, the
W, 15=I¢, 1 =C; 4,). If either ¢, ; or C, , is an asterisk, then
W, ;. 18 defined to be an asterisk.

19. Otherwise, the cases to be compared belong to the same
category. Here, maximal weights are assigned to the situ-
ational variables that are the most quantitatively the same.
Thus, the w,, ,<=1.0-Ic, ,—c, |, i=j. If either ¢, , or ¢, , is an
asterisk, then w, ; is defined to be an asterisk.

20. If each case situation is compared with each other, then
each weight vector, w,,, will be comprised of p=m
(m-1)/2 elements. Otherwise, each weight vector will be
comprised of p=0O(m) elements.

21. Next, normalize each of p rows of weights for w,, ,, where
k=1 to n. This is accomplished by replacing each w, , by

Wpk

n
2 Wpk
i1

Note that asterisks are not replaced and do not contribute to
the summation.

22. Next, find the n weight vector averages,

o
P
Wik

“* 7 |participating situational variables

A participating situational variable is one that does not
include an “*” in its field. Again, if there are no such fields,
then the pair of cases is omitted from the computation. If there
are no such pairs of cases, then the match cannot be computed
and thus is undefined.

23. Next, normalize w, ;, where k=1 to n. This is accom-
plished by replacing each w,,; by

Wk

— .
2 Wk
k=1

This yields the final weights, w,.

24. In theory, re-compute the weights, w,, whenever a case is
acquired, fired (i.e., using the square-root speedup method
only), or expunged, and/or a feature is acquired/expunged
by going to L1. In practice, using a service-oriented archi-
tecture (SOA), such transfer of control may only occur
during periods of relatively low server utilization (e.g.,

nights). Even then, it must be interruptible. Use the ciel of

the square root of the number of category member com-
parisons method for an order of magnitude speedup (e.g.,
for the evolution of new features). Otherwise, given suffi-
cient processor power, each case situation may be com-
pared with each other.

25. Next, find the predicted dependency category for a con-
text. First, perform a column-normalization by dividing the
non-Boolean contextual variables by the previously saved
column sums.

—

0

15

20

25

30

35

40

45

50

65

18

26. For each of m cases, compute

n
Z wylcix — context|
k=1

|participating situational variables|

match(i) =

Note that here the context can affect the number of partici-

pating situational variables. Non-participating situational

variables are substituted for by zero in this equation.

27. If the uniform skew was selected, for each dependency
category, d, calculate the number of members in a depen-
dency category, or Idl. Then,

1d|

match(d) = Z

ied

match(i)
]

28. If the 3-2-1 skew was selected, for each dependency
category, d, calculate the number of members in a depen-
dency category, or Idl. Then,

by < So 2 =ik
match(,)_iedmmac(z),

where the values of i are contiguous for the computation of

the 3-2-1 skew (e.g., for |dI=4, i=1, 2, 3,4—starting at the

logical head), though match (i') is taken for the four depen-
dency category members and thus i' is not necessarily con-

tiguous though in bijective correspondence with i.

29. Output, “I'm qualifier of the correct action.” Let,
difference=minimum match (d)-squelch. Any differ-
ence<-squelch/2 is associated with the qualifier, “very
sure”. Any —-squelch/2=difference=squelch/2 is associated
with the qualifier, “somewhat sure”. Any squelch/
2<difference=squelch is associated with the qualifier,
“somewhat unsure”. Finally, any squelch=difference is
associated with the qualifier, “very unsure”. The computed
value, match (d), may also be output.

30. The correct action dependency (d) will be paired with the
context and acquired as a new case, at the earliest oppor-
tunity, if the dependency should prove to be incorrect. This
dependency may or may not comprise a new action cat-
egory. The logical tail (LRU’d member) of the case base
may be expunged, as necessary, to make room for the new
case acquisition, which may be non deterministic (i.e., the
selected modalilty). If the correct action dependency (d) is
not known, then the paired action will be set to,
“Unknown”. This is necessary to prevent otherwise correct
near cases from being unnecessarily expunged, which
would occur if this unknown case were expunged. How-
ever, the user may ask for a suggestion. This mode itera-
tively takes the next highest-valued category computed for
match (d) and presents its action to the user as a suggestion.
This may not result in a local change of action, but if the
user should agree with the suggested category, then the
previously unknown category is set to the agreed category.

31. Non redundant correct (non-deterministic) cases are
acquired at the logical head of the case base. The logical
ordering involves updating the pointers to a doubly-linked
global list of cases and a free list, as well as list head and list
tail variables. (The maintenance of linked lists is common

US 9,330,358 B1

19

to computer science, was highlighted in the narrative sec-
tion, and thus is not exemplified here.) (If a deterministic
base is desired, then the previously acquired non-determin-
istic case (there can be at most one) is expunged.) Any
otherwise identified incorrect cases are expunged under
any methodology.

32. Feature Evolution Strategy One: Run numerous distinct
tables, having n situational variables each, in parallel. Each
table holds predominantly distinct situational variables
(features), though limited duplication is permitted to accel-
erate feature generation time. After all of the variables have
received computed weights, the n greatest weights, and
associated distinct variables (features) are concatenated in
one table and renormalized. At least one non-Boolean situ-
ational variable containing no asterisks is required in the
final table. Care must be exercised that no feature is “dan-
gling”—due to reference to a missing situational
variable(s), or even other feature(s). The requirement to
compute new normalized elements requires that the origi-
nal data be the starting point each time—along with the
appropriate sums (i.e., in view of a change in the included
fields). This strategy is most useful where many parallel/
distributed processors are available. A stable sort, such as
the n-way MergeSort (Appendix II), is used to sort the
weight vectors. New situational features are inserted at the
right. Thus, in the event of a tie, preexisting situational
features will be more highly valued, since they have sur-
vived the longer test of time.

33. Feature Evolution Strategy Two: If no situational variable
that is referenced by a feature(s) is allowed to be replaced
and no feature that is referenced by another feature(s) is
allowed to be replaced, then a second serial-processor
strategy may be more efficient. The (non-zero lowest-
weight) non-referenced variables and features can be
replaced (or augmented) with new variables and/or fea-
tures. To be replaced, the non-referenced variable or fea-
ture must have a weight, which is less than the average
weight of all variables and features (except itself) having
non-zero weights. We will not allow features to reference
other features in order to obtain better results. Here, a few
of the non-zero lowest-weight features can be found using
a single-pass algorithm, which is O(n) on a sequential
machine. New normalized elements will be computed.
This requires that the original data be the starting point—
along with new sums.

34. Using careful schema definition and instantiation, many
features can be generated for exploration (see FIGS. 2 and
3). Features may also be taken from case-base dependen-
cies in a more complex (self-referential) algorithm (FIG.
4). New cases and segmented bases can be formed through
the association of triggered dependencies and most-recent
successful actions.

35. It is better to generate more schemas than rely on schema
instances to cover the schema search space. This is because
having a greater number of schemas embodies greater
knowledge, which serves to constrain the search space.
Schema definition languages may be written.

36. If server utilization is relatively low, go to L1. Otherwise,
answer server demands.

Referring now to FIG. 1, FIG. 1 shows a block diagram of
one embodiment of a system 10 that may be used in accor-
dance with the methods described herein. System 10 may
include a first computing system 20 and a second computing
system 60. System 10 is shown in a networked, multi-proces-
sor, distributed computing configuration. It should be recog-
nized that system 10 may include substantially more net-
worked computing systems 20 and 60 than those shown in

35

40

45

20

FIG. 1. Additional computing systems allow for increased
learning as system 10 scales upward.

Computing systems 20 and 60 may be substantially simi-
lar, and may be configured with the appropriate software
modules to perform methods as discussed herein. The term
“module” generally refers to a software module. A module
may be implemented as a collection of routines and data
structures that performs particular tasks or implements a par-
ticular abstract data type. Modules generally are composed of
two parts. First, a software module may list the constants, data
types, variables, and routines that may be accessed by other
modules or routines. Second, a module may be configured as
an implementation, which may be private (i.e., accessible
only to the module), and which contains the source code that
actually implements the routines or subroutines upon which
the module is based. Thus, the use of the term “module”
herein, indicates reference to such software modules or
implementations thereof. The terms “module” and “software
module” can be utilized interchangeably with one another to
describe the same element or feature.

The embodiments described herein may be implemented
as a series of modules, either functioning alone or in concert
with physical electronic and computer hardware devices.
Such modules may be utilized separately and/or together
locally and/or remotely to form a program product thereof,
that may be implemented through signal-bearing media,
including transmission media and recordable media. The
methods described herein may be implemented as a program
product comprised of a plurality of such modules, which can
be interactively displayed for a user on a display screen of a
data-processing system (e.g., computer). Such interactivity
may be provided by a specialized graphical user interface (not
shown).

System 20 may include a case base system 30 including a
plurality of cases having one or more antecedents 40 and one
or more associated consequents 42. Antecedents 40 may be
comprised of one or more independent variables that include
Boolean and non-Boolean variables. System 30 may further
include an optional word base 50. The cases and word base 50
may be stored in memory within computing system 20. Simi-
larly, system 60 may include a case base system 70 including
a plurality of cases having one or more antecedents 80 and
one or more associated consequents 82. Consequents 82 may
comprise a domain specific dependency variable. System 70
may further include an optional word base 90. The cases and
word base 90 may be stored in memory within computing
system 70.

In operation, user-supplied contexts are input into case
base systems 20 and/or 60. The user-supplied contexts may
comprise one or more contextual antecedents, such as con-
textual antecedents 92 and 94, which are compared to the one
or more case antecedents, such as 40 or 80, that are stored in
the case base.

The cases stored in the case base include case antecedents
and case consequents, both of which are previously supplied
by a user, either during training of the system or during
real-time system operation. A case involving the best match
of'the case antecedents with the contextual antecedents is then
determined. The consequent of the selected case is then dis-
played to a user, and, if the displayed consequent is not a
question, the selected case is moved to the head of the case
base, as indicated in FIG. 1. In the event memory constraints
occur, least-frequently-used cases are deleted from the tail of
the case base, as indicated (or moved to a backup secondary
memory device such as an optical jukebox). In some embodi-
ments, in a training mode, the system may display, in addition

US 9,330,358 B1

21

to the case consequent(s) an explanation of the case anteced-
ent(s) that were matched with the contextual antecedent(s)
supplied by the user.

Some general rules that may be implemented into the sys-
tem and method disclosed herein may include: 1) cases may
be learned if the user agrees with the consequent or not—so
long as they do not duplicate an existing case, in which case
the existing case is simply moved to the head of the queue; 2)
cases are moved to the head of the queue so that the most-
recently referenced case will break any ties among cases
having the same computed possibility and so that the least-
recently referenced cases will fall to the tail where they may
be expunged with minimal functional loss; 3) consequents
that ask a question however are not moved to the head because
they are not as valuable as regular cases when (if) case
memory fills up; and 4) consequents may be specified as
“unknown” for consideration for subsequent specification (or
not), when they may become known.

FIG. 2 shows a block diagram of an embodiment of a
distributed processor system 100 in accordance with the
methods disclosed herein. The speed of a case-based reason-
ing system can be increased through the use of associative
memory and/or parallel (distributed) processors, such as
shown in FIG. 2. Furthermore, an increase in speed can be
obtained if information stores are subdivided for the case
knowledge by domain for threaded parallel processing. This
is known as segmenting the domain. Such segmentation can
be automatically managed by inferred symbolic heuristics,
but this will necessarily introduce much redundancy into the
system—albeit brain-like. The idea here is to match the can-
didate case to be acquired against the dynamic case residing
at the head of each segment. This case is acquired by those
segments, whose head most-closely (not perfectly) matches it
based on their possibilities.

Moreover, it is acquired by all segments whose current
head is within & of this new case, where 9 is dynamically
defined by the minimal possibility differential among case-
base heads. However, whenever the computed possibility
between the new case and the case-base heads is greater than
the current maximum among case-base heads, 0, so that the
new case falls outside of existing segments, the case is
acquired by creating a new segment (i.e., given sufficient
parallel nodes/space)—otherwise, the least-recently—used
(LRU) segment is expunged and replaced. Thus, a system,
such as system 10 or 100, may be cold-started with a pair of
non-redundant segments.

Further, given a system such as system 100, it is possible
for one or more computers to chat back and forth with each
other if the output of each can serve to augment the input for
another. This process is also brain-like because here the cases
will acquire knowledge on how to solve a problem (e.g., by
way of asking questions)—not just domain-specific knowl-
edge. This respects the mathematical process of randomiza-
tion. Every consequent (or response to a consequent) may be
either terminal or non-monotonic in its action—as deter-
mined by whether or not it elicits additional knowledge from
the user (or other subsystem) to augment the on-going con-
text. The consequent(s) produced by this iterative feedback
process may be corrected, as necessary. This is knowledge
amplification because knowledge begets knowledge. That is,
knowledge imbued along one path of reasoning becomes
subsumed along other paths of reasoning.

Feedback may play a role in the operation of the methods
described herein. Feedback takes two forms: 1) consequents
may raise questions, the answers to which, supplied by the
users, server to augment the context; and 2) the consequents
themselves may literally augment the context—again, under

10

15

20

25

30

35

40

45

50

55

60

65

22

user control. The fact that antecedents and consequents can
share the same space implies that words for both share the
same words table.

Classical set theory does not allow for duplication of ele-
ments in the context or antecedent. However, sentential forms
are sequence sensitive and thus differ from sets. For example,
if I state, “location”, you might think of a map; but, if I state,
“location, location, location”, you might instead think of real
estate. Our system must be capable of making use of such
sequence in matters of practical feedback. However, contex-
tual duplicate words may not be counted because to do so
would proportionately decrease the resultant possibility and
thus result in a bad case match. Fortunately, not counting
duplicates does not change the complexity of the algorithm.
The context length is decreased by one for each such dupli-
cate (i.e., when in default mode). Then, notice that tradition-
ally deleterious cycles (e.g., a—a; a—b, b—a; etc.) become
an asset because with the aforementioned feedback comes
duplication in the context, which as we’ve witnessed can
beneficially alter sentential semantics. This means that there
is no need to hash to detect cycles (using stacked contexts)
because such cycles are beneficial. Finally, the allowance for
cycles implies that there is no need to copy the context into a
buffer to facilitate data entry.

As such, system 100 may include a computer 110 having
processors 120, 130, and 140 connected thereto. Computer
110 may include a processor 112, memory 114, display 116,
and input device 118, such as a keyboard or mouse. System
100 may be used to provide an increase in computing capacity
by allowing processor 112 to coordinate processors 120, 130,
and 140 such that maximum processing capabilities are
achieved.

FIG. 3 shows a block diagram of an embodiment of a
computing system that may be used to implement a method in
accordance with the methods disclosed herein. FIG. 3 and the
following description are intended to provide a brief, general
description of a suitable computing environment in which an
embodiment of the method discussed herein may be imple-
mented. Although not required, the method will be described
in the general context of computer-executable instructions,
such as program modules, being executed by a personal com-
puter.

Moreover, those skilled in the art will appreciate that
embodiments of the method may be practiced with other
computer system configurations, including hand-held
devices, multiprocessor systems, microprocessor-based or
programmable consumer electronics, networked personal
computers, minicomputers, mainframe computers, and the
like. Embodiments of the method may also be practiced in
distributed computing environments where tasks are per-
formed by remote processing devices that are linked through
a communications network (such as shown in FIG. 2). In a
distributed computing environment, program modules may
be located on both local and remote memory storage devices.

System 200 may include a general-purpose computing
device in the form of a conventional personal computer 200,
which includes processing unit 202, system memory 204, and
system bus 206 that operatively couple various system com-
ponents to other system components (e.g., system bus 206
operatively couples system memory 204 to processing unit
202). Examples of system bus 206 include a memory bus,
memory bus controller, peripheral bus and local bus using any
of a variety of known bus structures. System memory 204
may include read only memory, random access memory, and
a basic input/output system.

System 200 further includes hard disk drive 216 for reading
from and writing to a hard disk (not shown) a magnetic disk

US 9,330,358 B1

23

drive 218 for reading from or writing to a removable magnetic
disk 220 (e.g., 4.5-inch disk), and an optical disk drive 222 for
reading from and writing to a removable optical disk 224
(e.g., CD-ROM and DVD). Hard disk drive 216, magnetic
disk drive 218 and optical disk drive 222 are operatively
connected to system bus 206 via hard disk drive interface 226,
magnetic disk drive interface 228 and optical drive interface
230, respectively. The drives and their associated computer-
readable media provide non-volatile storage of computer
readable instructions, information structures, program mod-
ules and other information for personal computer 200.

The method steps of embodiments may be stored on a hard
disk, magnetic disk 220, and optical disk 224. Although the
exemplary environment described herein employs a hard
disk, magnetic disk 220 and optical disk 224, it should be
appreciated by those skilled in the art that other types of
computer readable media that may store information acces-
sible by a computer, (e.g., magnetic cassettes, flash memory
cards, digital video disks, Bernoulli cartridges, random
access memories (RAMs), and read only memories (ROMs))
may also be used in the exemplary operating environment
without departing from the scope or spirit of embodiments of
the method.

A user may enter commands and information into personal
computer 200 via input devices such as keyboard 240 and
pointing devices (e.g., mouse and trackball) (not shown in
FIG. 3). Examples of input devices include a microphone,
joystick, game pad, and satellite dish. Input devices may be
operatively connected to processing unit 202 via universal
serial bus (USB) port interface 244 that is operatively con-
nected to system bus 206. Input devices may also be opera-
tively connected to processing unit 202 via other interfaces
(e.g., parallel port, serial port and game port) that are opera-
tively connected to system bus 206. Monitor 246 is opera-
tively connected to system bus 206 via video adapter 248.

Other peripheral devices (e.g., speakers and printers) may
be operatively connected to system 200 via other interfaces.
System 200 may operate in a networked environment using
logical connections to one or more remote computers such as
remote computer 250 via network a network, such as a local
area network, wide area network, and wireless network.
Examples of remote computer 250 include a personal com-
puter, server, router, networked personal computer, peer
device, and network node.

Referring to FIGS. 4 and 5, FIG. 4 shows flowchart of an
embodiment of a method 300, while FIG. 5 shows a flowchart
of'an embodiment of a step 330 for determining a normalized
weight vector. Some or all of the steps of method 300 may be
performed by a computer having a processing device con-
nected thereto, such as computer 200 shown in FIG. 3 or
system 100 shown in FIG. 2.

Method 300 may begin at step 310, which involves provid-
ing a case base comprising a plurality of cases arranged in a
tabular format, such as shown in Table 1 and FIGS. 6 and 7.
Each case includes one or more case base independent weight
variables, such as ind, through ind,, in Table 1, and a domain-
specific dependency variable, such as in the “Dep.” column in
Table 1. The case base independent weight variables com-
prise case base Boolean variables, such as in the w, and w,,
columns shown in Table 1, and case base non-Boolean vari-
ables, such as in the w, and w; columns shown in Table 1.

Step 320 then involves normalizing the non-Boolean vari-
ables for each case of the case base. As an example, columns
w, and w; of Table 2 show the normalized non-Boolean vari-
ables, with row c, of Table 2 representing the normalized
version of row c,, of Table 1. Using the entry in cell (¢,,w,) as

10

15

20

25

30

35

40

45

50

55

60

65

24

an example, the value 0.333 was obtained by dividing the
same cell entry from Table 1 (10) by the sum of the weights in
column 1 of Table 1 (30).

Method 300 then proceeds along flow path 321 to Step 330,
which involves determining a normalized weight vector for
the case base. Referring to FIG. 5, step 330 includes step 331,
which involves comparing the case base Boolean variables
and case base non-Boolean variables of each case of the case
base to each other to determine a weight vector for each
comparison. Table 3 above and the associated description
provide an example of the determined weight vectors, which
are represented by the rows of Table 3. For example, the
weight vector for the comparison between case 1 and case 2 in
the case base is designated by ¢, , and is [0.167, 1, 0.125, 1].
The weight vector may be determined by calculating Ic, ,—c;
#l, where ¢, and ¢, are the context vectors for two cases in the
case base and k 1s a situational (independent) variable. The
asterisks in Table 3 represent situational variables that are
non-participating (i.e. where variables do not exist in the
particular case for comparison). For example, row ¢, ; in
Table 3 contains two asterisks because row c; in Table 1 does
not have values for ind; and ind,. Step 332 then involves
normalizing the weight vector for each comparison. Table 4
shows the normalized rows for each of the case comparisons
(i.e. rows) shown in Table 3. For example, the entry in cell
(c,sw,) in Table 4 (0.0729) was obtained by dividing 0.167
(the corresponding entry in Table 3 for cell (¢,,w,)) by 2.292,
which is the sum of the first row in Table 3. Next, step 333
involves summing, across each comparison, the weights of
each of the case base Boolean variables and case base non-
Boolean variables. Table 4 shows the sum in the row begin-
ning with aX. This row involves the sum of each of weights w,
through w,,.

Step 334 involves dividing each of the sums of the weights
of each of the case base Boolean variables and case base
non-Boolean variables by the number of participating situ-
ational variables to determine an average weight vector for
each of the case base Boolean variables and case base non-
Boolean variables. Table 4 shows the average weight vector in
the row beginning with “Avg”. As an example, the entry
(0.2102) in Table 4 for the cell (Avg, w,) was obtained by
dividing the value (0.6306) for the cell (2, w,) by 3. The
denominator 3 was used because there were only 3 partici-
pating situational variables (one for ¢, ,, one for ¢, 4, and one
for ¢, 4). For the calculation for column w5, the denominator
would be 6, as there are no asterisks in that column. Step 335
then involves normalizing the average weight vector to deter-
mine the normalized weight vector. The normalized weight
vector, w, is shown in Table 4 in the row beginning with
“Norm.” As an example, the entry (0.1785) in Table 4 for the
cell (Norm, w,) was obtained by dividing the value (0.2102)
for the cell (Avg, w,) by 1.1778, which is the sum of the
values in the Avg. row.

Method 300 may then proceed along flow path 337 to step
340, which involves receiving a context comprising one or
more contextual independent weight variables, wherein the
contextual independent weight variables comprise contextual
Boolean variables and contextual non-Boolean variables. The
context, with associated contextual Boolean variables and
contextual non-Boolean variables, may be configured the
same as the case base variables as shown in Table 1 and FIGS.
6 and 7. In some embodiments, the context is user-specified.
In some embodiments, the context received may have one or
more natural language contextual antecedents which need to
be converted into contextual Boolean variables and contex-
tual non-Boolean variables. The natural language contextual
antecedents may comprise words, numbers, or any combina-

US 9,330,358 B1

25

tion thereof. The contextual antecedents may be single words,
phrases, sentences, or multiple phrases or sentences.

Further, the natural language contextual antecedents may
be in any language identifiable by a user, such as English or
Spanish. As an example, the user-specified context may be
input by a user from a computer input device, such as key-
board 240. In some embodiments, the natural language con-
textual antecedents are converted into contextual Boolean
variables and contextual non-Boolean variables by use of a
hash table that associates the natural language words or
phrases, for example, to Boolean or non-Boolean variables.

Step 350 then involves normalizing the contextual non-
Boolean variables. Such normalization may be performed in
the same manner as the normalization discussed above with
respect to the case base non-Boolean variables. Step 360 then
involves determining a match between the received context
and each case of the case base using the normalized non-
Boolean variables for each case of the case base, the normal-
ized contextual non-Boolean variables, and the normalized
weight vector for the case base. In some embodiments, the
match is determined by using Eq. 1 shown above, where w is
the normalized weight vector.

Step 370 then involves determining a skew value for each
category of domain specific dependency variables. The skew
value is determined, for example, by using a 3-2-1 skew or a
uniform skew, as discussed above. In the example discussed
above, there were two categories of domain specific depen-
dency variables. One category involved dependencies with a
value of one and the other category involved dependencies
with a value of two. Cases ¢, and ¢, shown in Table 2 were in
the first category, while cases ¢, and ¢ shown in Table 2 were
in the second category. Step 380 then involves selecting the
category of domain specific dependency variables having the
minimal skew value. In the example discussed above, the
minimum skew value (0.0165) was associated with the sec-
ond category (i.e. dependency value of two), so the second
category was chosen. In some embodiments, method 300 then
proceeds to step 390, which involves displaying the value of
the selected dependency category on a display, such as dis-
play 116 shown in FIG. 2.

Some or all of the steps of method 300 may be stored on a
non-transitory computer readable storage medium, wherein
the steps are represented by computer readable programming
code. The steps of method 300 may also be computer-imple-
mented using a programmable device, such as a computer-
based system. Method 300 may comprise instructions that,
when loaded into a computer-based system, cause the system
to execute the steps of method 300. Method 300 may be
implemented using various programming languages, such as
“Java”, “C”, or “C++".

Various storage media, such as magnetic computer disks,
optical disks, and electronic memories, as well as computer
readable media and computer program products, can be pre-
pared that can contain information that can direct a device,
such as a micro-controller, to implement the above-described
systems and/or methods. Once an appropriate device has
access to the information and programs contained on the
storage media, the storage media can provide the information
and programs to the device, enabling the device to perform
the above-described systems and/or methods.

For example, if a computer disk containing appropriate
materials, such as a source file, an object file, or an executable
file, were provided to a computer, the computer could receive
the information, appropriately configure itself, and perform
the functions of the various systems and methods outlined in
the diagrams and flowcharts above to implement the various
functions. That is, the computer could receive various por-

25

40

45

50

65

26

tions of information from the disk relating to different ele-
ments of the above-described systems and/or methods, imple-
ment the individual systems and/or methods, and coordinate
the functions of the individual systems and/or methods.

The language used in the specification has been principally
selected for readability and instructional purposes, and may
not have been selected to delineate or circumscribe the inven-
tive subject matter. Accordingly, the disclosure of the inven-
tive subject matter is intended to be illustrative, but not lim-
iting, of the scope of the invention, which is set forth in the
following claims.

Further, many modifications and variations of the Case-
Based Reasoning System Using Normalized Weight Vectors
are possible in light of the above description. Within the scope
of the appended claims, the Case-Based Reasoning System
Using Normalized Weight Vectors may be practiced other-
wise than as specifically described. Further, the scope of the
claims is not limited to the implementations and embodi-
ments disclosed herein, but extends to other implementations
and embodiments as contemplated by those having ordinary
skill in the art.

I claim:

1. A computer-implemented method comprising the steps
of:

providing a system including a computer having a com-

puter input device connected thereto, a display device
connected thereto, and a plurality of distributed proces-
sors communicatively coupled to the computer, wherein
the computer is configured to coordinate the activities of
the distributed processors, wherein each of the distrib-
uted processors is configured to maintain a case base
comprising a plurality of cases arranged in a tabular
format, each case comprising one or more case base
independent weight variables and a domain-specific
dependency variable, wherein the case base independent
weight variables comprise case base Boolean variables
and case base non-Boolean variables;

normalizing the non-Boolean variables for each case of the

case base;

determining a normalized weight vector for the case base;

receiving a context comprising one or more contextual

independent weight variables, wherein the contextual
independent weight variables comprise contextual
Boolean variables and contextual non-Boolean vari-
ables;

normalizing the contextual non-Boolean variables;

determining a match between the received context and

each case of the case base using the normalized non-
Boolean variables for each case of the case base, the
normalized contextual non-Boolean variables, and the
normalized weight vector for the case base, using the
equation

n
Z welcix = cjxl
=1

match(i) = —— - ,iE
|participating situational variables|

Js

where c, is a case in the case base, ¢, is a received context, and
w is the normalized weight vector for the case base;
determining a skew value for each category of domain
specific dependency variables;
selecting the category of domain specific dependency vari-
ables having a minimal skew value;
comparing the minimal skew value to a user-defined
squelch value;

US 9,330,358 B1

27

returning feedback to a user of the system that the system is
unsure of the result if the minimal skew value exceeds
the user-defined squelch value; and

returning feedback to a user of the system that the system is

sure of the result if the minimal skew value does not
exceed the user-defined squelch value.

2. The computer-implemented method of claim 1, wherein
the step of determining a skew value for each category of
domain specific dependency variables uses a 3-2-1 skew.

3. The computer-implemented method of claim 1, wherein
the step of determining a skew value for each category of
domain specific dependency variables uses a uniform skew.

4. The computer-implemented method of claim 1, wherein
the step of determining a normalized weight vector for the
case base comprises the steps of:

comparing the case base Boolean variables and case base

non-Boolean variables of each case of the case base to
each other to determine a weight vector for each com-
parison;
normalizing the weight vector for each comparison;
summing, across each comparison, the weights of each of
the case base Boolean variables and case base non-
Boolean variables;

dividing each of the sums of the weights of each of the case
base Boolean variables and case base non-Boolean vari-
ables by the number of participating situational vari-
ables to determine an average weight vector for each of
the case base Boolean variables and case base non-
Boolean variables; and

normalizing the average weight vector to determine the

normalized weight vector.

5. The computer-implemented method of claim 1 further
comprising the step of displaying the value of the selected
category of domain specific dependency variables on a dis-
play.

6. A system comprising:

a computer having a computer input device and a display

device connected thereto; and
a plurality of distributed processors communicatively
coupled to the computer wherein the computer is con-
figured to coordinate the activities of the distributed
processors, wherein each of the distributed processors is
configured to maintain a case base, wherein each of the
plurality of distributed processors are configured to per-
form a method including the steps of:
providing a case base comprising a plurality of cases
arranged in a tabular format, each case comprising one
or more case base independent weight variables and a
domain-specific dependency variable, wherein the case
base independent weight variables comprise case base
Boolean variables and case base non-Boolean variables;

normalizing the non-Boolean variables for each case of the
case base;

determining a normalized weight vector for the case base;

receiving a context comprising one or more contextual

independent weight variables, wherein the contextual

28

independent weight variables comprise contextual
Boolean variables and contextual non-Boolean vari-
ables;

normalizing the contextual non-Boolean variables;

5 determining a match between the received context and
each case of the case base using the normalized non-
Boolean variables for each case of the case base, the
normalized contextual non-Boolean variables, and the
normalized weight vector for the case base, using the

10 .
equation

n
Z welcix = cjxl
=1

L e i
|participating situational variables|

match(i) = J»

where c, is a case in the case base, ¢, is a received context, and
w is the normalized weight vector for the case base;
determining a skew value for each category of domain
specific dependency variables;
selecting the category of domain specific dependency vari-
ables having a minimal skew value;
comparing the minimal skew value to a user-defined
squelch value, wherein if the minimal skew value
exceeds the user-defined squelch value, the method fur-
ther comprises the step of displaying, on the display
device, feedback to a user of the system that the system
is unsure of the result, and wherein if the minimal skew
value does not exceed the user-defined squelch value,
the method further comprises the step of displaying, on
the display device, feedback to a user of the system that
the system is sure of the result; and
displaying, via the display device, the value of the selected
category of domain specific dependency variables.
7. The system of claim 6, wherein the step of determining
a normalized weight vector for the case base comprises the
steps of:
comparing the case base Boolean variables and case base
non-Boolean variables of each case of the case base to
each other to determine a weight vector for each com-
parison;
normalizing the weight vector for each comparison;
summing, across each comparison, the weights of each of
the case base Boolean variables and case base non-
Boolean variables;
dividing each of the sums of the weights of each of the case
base Boolean variables and case base non-Boolean vari-
ables by the number of participating situational vari-
ables to determine an average weight vector for each of
the case base Boolean variables and case base non-
Boolean variables; and
normalizing the average weight vector to determine the
normalized weight vector.

20

25

30

40

45

50

55
k0 ok &k ok

